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ABSTRACT

This study develops a flexible Bayesian technique to quantify uncertainties associated with the operational

Weather Surveillance Radar-1988 Doppler (WSR-88D) quantitative precipitation estimation (QPE) prod-

ucts over complex terrain. Radar-only rainfall estimates and rain gauge observations over the Russian River

watershed inNorthernCalifornia are utilized to demonstrate this new bias correction approach. Conventional

mean field bias (MFB) and local bias (LB) correction methods are also implemented for comparison pur-

poses. Results show that the proposed Bayesian technique outperforms the conventional MFB and LB

correction approaches. The radar QPE performance is dramatically improved after the Bayesian-based bias

correction: the root-mean-square error is reduced from 4.2 to 1.71mm, the normalized mean absolute error is

reduced from 64.5% to 24.2%, and the correlation with gauge measurements increases from 0.11 to 0.74. In

addition, the terrain impact on radar QPE bias correction performance is investigated. After incorporating

the terrain elevation information in the Bayesian framework, the QPE performance is further enhanced.

Overall, the QPE performance scores after including the terrain information are improved about 10% rel-

ative to those only based on rainfall intensity values.

1. Introduction

Obtaining accurate quantitative precipitation esti-

mation (QPE) using rain gauges and/or remote sensing

instruments such as radar and satellite is a problem of

continuing interest to meteorologists and hydrologists.

There are a number of advantages of using radar since

radar can observe precipitation over a wide area in a

relatively short period of time (Doviak and Zrnić 1993;

Bringi and Chandrasekar 2001; Zhang et al. 2011; Chen

et al. 2019a). However, it is nontrivial to construct a

robust functional relation between the radar measure-

ments aloft and rainfall rate on the ground (Fulton et al.

1998; Anagnostou et al. 1999; Krajewski and Smith 2002;

Chen et al. 2017). There aremany issues in the process of

converting radar observations into reliable QPE prod-

ucts that can be used for subsequent applications. These

issues, if not handled well, can introduce significant

errors and uncertainty in the derived surface precipitation

estimates and hydrologic forecasts.

In general, the associated errors in radar QPE can be

classified into four categories: 1) radar system calibra-

tion ormeasurement error; 2) data quality control due to

wave propagation in complex environments; 3) param-

eterization error in radar rainfall relations; 4) mismatch

between radar estimates aloft and surface rainfall at the

ground. The first category is commonly referred to the

accuracy of radar system components (i.e., transmitter,

receiver, etc.), and the measurement accuracy of reflec-

tivity or other polarimetric radarmoments that can be used

to derive QPE. The data quality control and environ-

mental factors include clutter filtering, nonmeteorologicalCorresponding author: Haonan Chen, haonan.chen@noaa.gov
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echo suppression, and anomalous radar beam propaga-

tion. Beam blockage resulting from part of the radar

beam intercepting obstacles such as buildings and

mountains is another important environmental factor

that affects QPE. This is manifest especially in complex

topography such as the westernUnited States, where the

operational weather radars are deployed in mountain-

ous terrain (Maddox et al. 2002; Houze 2012;Willie et al.

2017; Cifelli et al. 2018; Bytheway et al. 2019). In addi-

tion, substantial variability in the vertical profile of re-

flectivity (VPR) occurs as a result of precipitation

growth, evaporation, and melting of ice particles and

snowflakes (Bellon et al. 2005; Zhang and Qi 2010; Gou

et al. 2018). Such variations indicate that there can be

large differences between actual radar measurements in

the atmosphere and ideal observations occurring at the

ground. VPR correction is often required in the data

quality control process in order to compensate such

variations and derive surface level precipitation esti-

mates. On the other hand, the radar beam is likely to

either partially or completely overshoot shallow precipita-

tion at long ranges, resulting in either underestimation of

the precipitation rate or complete failure to detect pre-

cipitation respectively. The third category of error arises

from the assumption on the physical model of raindrop

size distribution (DSD) and the relation between the

physical model and radar parameters. The resulting ra-

dar rainfall relations based on this assumption have in-

herent parameterization errors. It is challenging to use

these parametric rainfall relations to capture the com-

plex space time variability in precipitation microphysics,

especially in complex terrain. Even if the empirical re-

lations are adaptively adjusted based on local DSD prop-

erties, such inherent errors are inevitable. Mismatch

between radar rainfall estimates and pointwise gauge

observations, the fourth category, is also critical in the

assessment of radar QPE performance. This type of

uncertainty ranges from fundamental radar and gauge

mechanical functionality to the spatial and temporal

differences in these two measuring techniques. Even if

we assume gauges are a measure of truth and the point

gauge data can represent the averaged radar estimates

over a pixel at some height above the ground, a ‘‘residual

error’’ is still expected due to the low level atmospheric

turbulence including extreme wind effects.

In applications, it is difficult to quantify radar QPE

errors from each category. Often, all types of errors in

radar-based QPE product are evaluated and character-

ized as a whole. Numerous studies have focused on the

correction of such overall bias in radar QPE using rain

gauge data. For example, early work such as Brandes

(1975) attempted to reduce the bias in radar estimates of

rainfall using an adjustment factor. Krajewski (1987)

developed an ordinary cokriging procedure to optimally

merge radar rainfall estimates and rain gauge data. Test

results based on numerical simulation of rainfall data at

daily time scales showed the error characteristics of both

radar and gauge as a function of gauge network density.

Seo (1998) computed the expectation of rainfall at un-

gauged sites conditional on the observed rain gauge and

radar data in order to account for the fractional cover-

age of rainfall, and subsequently introduced amean field

bias correction procedure (Seo et al. 1999) and a local

bias correction procedure (Seo and Breidenbach 2002).

A Bayesian technique was introduced by Todini (2001)

to remove radar QPE error variance, which combines

the use of block-kriging and Kalman filtering based on

rain gauge measurements (representing the true rainfall

field). Therein, the error structure of rain gauge and

radar observations is estimated either from historical

data with assumption of stationarity or real-time data

with a parameter updating procedure. In the operational

Multi-Radar Multi-Sensor (MRMS) system (Zhang

et al. 2011), correction of hourly radar QPE is per-

formed in three steps: 1) hourly rainfall differences be-

tween radar and gauge are calculated at gauge stations;

2) the differences are interpolated onto the MRMS grid

via an inverse distance weighting scheme; 3) the in-

terpolated difference field is subtracted from the hourly

radar QPE estimates.

Roughly speaking, these bias correction methodolo-

gies can be classified into two categories, namely, mean

field bias (MFB) correction and local bias (LB) correc-

tion. The MFB correction essentially is to estimate an

overall bias in a mean sense for a large radar QPE do-

main, whereas the LB correction is to derive the radar

QPE bias at each grid (i.e., resolution pixel). Depending

on the specific application scenarios, both correction

schemes have advantages and disadvantages. In general,

one would expect that the MFB correction could better

extract the overall radar QPE system bias, while the LB

correction could better capture the spatial variations.

Nevertheless, both approaches are purely based on

statistical analysis (i.e., observed or estimated rainfall

intensities). Environmental information such as terrain

and temperature is not taken into account, although

the bias corrected QPE was evaluated in different

weather conditions. In complex terrain such as Northern

California, wind direction and terrain forcing are among

the key factors affecting the precipitation intensity and

distribution (White et al. 2003). Conventional radar

QPE bias correction schemesmay not be able to capture

the environmental variations as such.

This paper develops a hierarchical Bayesian frame-

work to estimate the distribution of uncertainties asso-

ciated with radar-derived rainfall products over complex
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terrain. In particular, the probability distribution of the

targeted (i.e., true) precipitation conditional on the ra-

dar estimates is determined by Bayes’ theorem. The

radar product uncertainties are characterized and

quantified in terms of various probability distributions

conditional on the ‘‘true’’ measurements. The regional

distribution of the model parameters are described

using a generalized regression function that links radar-

based estimates and ground references. In addition, the

proposed Bayesian model is very flexible so that the

terrain elevation and/or wind information can be easily

incorporated in order to quantify the impact of oro-

graphic forcing on the variability of radar rainfall esti-

mates. The Bayesian approach also takes into account

the spatial and/or temporal covariates in order to get a

full picture of the radar QPE uncertainty distributions.

With such information, we can correct new radar esti-

mates even without collocated gauge measurements in

either temporal or spatial dimensions.

The remainder of this paper is organized as follows.

Section 2 details the Bayesian model for radar QPE bias

correction. Section 3 describes a simplified version of

two conventional bias correction schemes for comparison.

Case studies using operational radar hourly rainfall prod-

ucts at 1-km scale are performed in section 4 to demon-

strate the feasibility of the proposed Bayesian model.

Section 5 quantifies the impact of terrain forcing on radar

QPE correction within the Bayesian framework. Section 6

explores the potential of this new bias correction approach

for operational applications, and the main findings of this

study are summarized in section 7.

2. Bayesian framework for radar QPE bias
correction

a. Generic model design

Figure 1 shows an overall diagram of the proposed

Bayesian framework for radar QPE bias correction.

Therein, T(s, t) denotes the ‘‘truth’’ of precipitation

measurement at site s and time t.For example,T(s, t) can

be assumed as the near-surface precipitation measure-

ment at gauge station s and the tth hour in a day. The

term R(s, t) denotes the corresponding radar rainfall

estimate at site s and time t. Ideally, the revised radar

rainfall estimate after correcting the bias in R(s, t)

should be close to T(s, t). In this study, t is on hourly

scale. For simplicity, this paper usesT andR to represent

T(s, t) and R(s, t), respectively.

According to Bayes’ theorem, the conditional proba-

bility of T given that radar estimateR is available can be

expressed as follows:

P(TjR)}P(RjT)P(T) , (1)

where P(TjR) is the posterior probability of T occurring

given thatR is true;P(RjT) is the likelihood ofR occurring

given that T is true; P(T) is the prior probability of T.

Assuming that T andR are continuous since they both

represent random precipitation values, the probability

in Eq. (1) can be reformulated in terms of the condi-

tional precipitation densities:

f (TjR)} f (RjT)f (T) , (2)

where f(RjT) is the likelihood of radar estimate R given

ground reference T. It is also written as

RjT;D(u) , (3)

where D stands for the conditional distribution of RjT
derived from various distribution families, and u 5
(u1, u2, . . . , un) indicates the associated collection of n

distribution parameters (e.g., n 5 2 stands for normal

or lognormal distribution; n 5 3 stands for generalized

extreme value or Student’s t distribution).

Each conditional distribution D can be expressed

under the nonstationary assumption, in which the spatial

and temporal covariates are considered: u/ g(b; T, g),

where g is the linked function; b represents the param-

eter set of the linked function; g is the collection of co-

variates (i.e., radar rainfall estimates, and/or terrain and

wind information). Based on the calculated parameter

set b from the training data, the quantity of interest can

be computed at a new (testing) site and/or time. In

particular, the radar QPE estimates at the new site and

time are defined as R*, and the obtained q quantiles of

the posterior predictive distribution of T* is used to

correct R*.

The posterior distribution of T* given R* occurring is

f (T*jR*,T ,R)5
ð
f (T*,bjR*,T ,R) db. (4)

Following the rule of joint probabilistic distributions,

the right term inside the integral of Eq. (4) is written as

f (T*,bjR*,T,R)5 f (T*jR*,T,R,b)f (bjR*,T ,R).
(5)

Because T* is independent from T and R, the first term

of the right hand side of Eq. (5) is transformed as

f (T*jR*,T,R,b)5 f (T*jR*,b). (6)

Since the parameters b are independent from the new

estimate R*, the second term on the right hand side of

Eq. (5) can be expressed as

f (bjR*,T,R)5 f (bjT ,R). (7)
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Hence, the posterior predictive distribution of T* in

Eq. (4) can be written as

f (T*jR*,T,R)5
ð
f (T*jR*,b)f (bjT,R) db, (8)

which forms the fundamental of the Bayesian-based

radar QPE bias correction scheme.

b. Implementation of the Bayesian framework

The empirical distribution of R conditional on T [i.e.,

Eq. (3)] should be fitted empirically from the relationship

between radar rainfall estimates, ground reference and

relevant spatiotemporal covariates in specific applications.

In general, it can be assumed to be a lognormal distribution

(e.g., Cho et al. 2004) or Student’s t distribution. For

demonstration purposes, this study adopts the Student’s t

distribution, with its second parameter expressed as a lin-

ear regression of the estimate R. Here, it should be noted

that we have also tried other distributions including

lognormal. No significant differences were observed in

the performance of final (bias corrected) radar QPE

products for the case studies presented in this analysis.

Extensive comparison of different distribution assump-

tions is beyond the scope of this paper.

Two regressionmodels are considered. The first one is

only based on the intensity values of radar rainfall esti-

mates (i.e., no environmental factors). The second one

uses both radar rainfall estimates and terrain topogra-

phy. In the first scenario, the empirical distribution of R

conditional on T is expressed as

RjT;Student(n,a
1
1a

2
R,s), (9a)

n,a
1
,a

2
;Uniform(2‘, 1‘), (9b)

s;Uniform(0, 1‘), (9c)

where n is the number of degrees of freedom; (a11 a2R)

is a linear relation of the radar estimate R, representing

the sample mean; and s is the variance. The distribu-

tions of n, a1, a2, and s in Eqs. (9b) and (9c) essentially

means that they are real numbers.

FIG. 1. Overall diagram of the proposed Bayesian framework for radar QPE bias correction.

Symbols are defined in the text. Note that, although the uncertainty parameters are estimated

based on gauge data at point locations, application of the trained framework is not limited to

those specific locations.
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The empirical distribution of R conditional on T for

the second scenario is similar to Eq. (9). But the terrain

elevation information is considered in the linear relation

(i.e., sample mean):

RjT; Student[n, (a
1
1b

1
)1 (a

2
1b

2
)R,s], (10a)

n,a
1
,a

2
;Uniform(2‘, 1‘), (10b)

s;Uniform(0, 1‘), (10c)

where b1 and b2 denote the impact of terrain forcing,

which follows the multivariate normal distribution as

follows: �
b
1

b
2

�
;N

�
0

0
,S

b

�
. (11)

In the radar QPE bias correction process, the distribu-

tion is bivariate because of the two covariances between

the radar estimate and terrain.

It should be noted again that the designed Bayesian

model is very flexible.One can easily incorporate additional

environmental factors. For example, to study the impact of

wind on radar QPE performance, the model can be ex-

tended to include a term for wind information as follows:

RjT; Student[n, (a
1
1b

1
1g

1
)

1 (a
2
1b

2
1g

2
)R,s], (12a)

n,a
1
,a

2
;Uniform(2‘, 1‘), (12b)

s;Uniform(0, 1‘), (12c)

where g1 and g2 denote the impact of wind. As a result,

both (b1/b2) and (g1/g2) will follow multivariate normal

distributions:

�
b
1

b
2

�
;N

�
0

0
,S

b

�
, (13a)

�
g
1

g
2

�
;N

�
0

0
,S

g

�
, (13b)

where Sb and Sg are the covariance matrices.

Nevertheless, wind information is only available at a

small portion of gauge stations used in this study. It is

challenging to fully understand the wind impact on radar

QPEwith limited wind observations. As such, this paper

only focuses on demonstration of the two models illus-

trated in Eqs. (9) and (10).

c. Parameter estimation

The prediction of the posterior T* (i.e., bias corrected

radar QPE) in Eq. (8) is nontrivial since the empirical

distribution f is rather arbitrary. In addition, it is difficult

to obtain an analytic form of the posterior predictive

distribution since there is no general way to calculate the

associated integral in Eq. (8). To this end, this study uses

the Markov chain Monte Carlo (MCMC) technique to

produce the posterior distribution of each parameter

and quantify the associated predictive uncertainty

(Carpenter et al. 2017). The model parameters and the

spatial–temporal covariates of terrain component in

radar QPE are routinely updated via the MCMC ex-

periments. In particular, it is assumed that there are

many replicates of the MCMC samples for b in Eq. (8),

and the prediction of the posterior target T* in Eq. (8) is

performed for each sample. The collection of all samples

is a realization of posterior predictive distribution for T*

at a test site/grid, where the input data include estimated

parameters b and the known radar estimate R*.

To sample T* from f (T*jR*, T, R) in Eq. (8), the

MCMC technique is used again, but b, R* are constant

this time. Ultimately, we can obtain the spatial pattern

of bias corrected radar QPE in terms of the mean, me-

dian, and credible intervals in the regions of interest.

3. Conventional radar QPE bias correction
approaches for comparison

As mentioned previously, conventional statistical

approaches to radar QPE bias correction mainly include

MFB and LB correction. In the following section, both

are briefly reviewed and will be compared with the

proposed Bayesian framework.

a. MFB correction

The MFB correction is performed through the esti-

mation of an adjustment factor that is defined as the

ratio of gauge observed rainfall and the rainfall esti-

mated from radar (G/R). This bias-adjustment factor is

estimated as

MFB5
�
N

i51

G
i

�
N

i51

R
i

, (14)

where Gi and Ri represent gauge and radar rainfall

measurements, respectively; N stands for the number of

valid radar–gauge pairs. More detailed estimation of

such bias ratio can be found in Seo et al. (1999) and

Chumchean et al. (2006). Then the radar rainfall esti-

mates are corrected by multiplying the bias-adjustment

factor MFB. This is the simplest way to reduce the av-

erage bias between radar estimates and corresponding

gauge rainfall amounts at the rain gauge locations.
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In this paper, the number N is determined at an event

scale, and the calculated MFB is implemented on an

hourly basis. That is, both Gi and Ri in Eq. (14) will

represent hourly rainfall estimates, and the valid radar–

gauge pairs during a whole event are considered when

calculating the bias ratio.

b. LB correction

The local bias correction scheme implemented in this

study is similar to that adopted by the operational

MRMS system (Zhang et al. 2011). First, an additive

error in the radar rainfall estimate is calculated at each

gauge location:

e
j
5R

j
2G

j
, (15)

where Rj and Gj are radar rainfall estimate and gauge

rainfall observation at the jth gauge location, respec-

tively; ej stands for the rainfall difference between radar

and gauge. Then, the differences at multiple gauge sta-

tions are interpolated over the predefined radar QPE

domain according to the following criterion:

R
b
5

�
n

j51

e
j
w

j

�
n

j51

w
j

, (16a)

w
j
5

(
1/dx

j , d
j
#D

0, d
j
.D

, (16b)

where Rb is the estimated radar QPE bias at a certain

grid point; wj is the weight assigned to the jth gauge; dj is

the distance between the grid point and the jth gauge.

Rain gauges located far from the grid point will have

small weights and thus little effect on the bias estimate.

The term x is an exponent, which varies from 0.5 to 3 and

is determined each hour through cross validation that

minimizes the interpolation error of radar–gauge dif-

ferences in a particular domain; n is the total number of

gauge–radar pairs within a specified radius of influence

(i.e., D). Note that the index j in Eqs. (15) and (16) de-

notes the gauge identities in the spatial domain, whereas

the index i in Eq. (14) can represent both spatial and

temporal dimensions.

In this study, theMRMS approach is adopted to select

initial values of x andD. This choice is also motivated by

the ultimate goal of extending the proposed Bayesian

framework to the operational MRMS system. In par-

ticular, the cross validation is performed by removing a

rain gauge and interpolating to its location using radar–

gauge errors at all the remaining rain gauges. The dif-

ference between the interpolated radar–gauge error and

the observed value is then calculated. After cross vali-

dating all rain gauge points, a total cross-validated

mean-squared error is determined. The two parame-

ters are then adjusted to a new set of trial values and the

cross-validation process is repeated. Cross validation is

performed for each analysis time (i.e., every hour), re-

sulting in different optimum parameters each hour. This

gauge-based local bias correction provided consistent

improvements over the radar-only QPE across the

CONUS domain (Zhang et al. 2011).

4. Case studies in Northern California

a. Study domain and precipitation event

For initial verification of the proposed Bayesian cor-

rection approach, this paper uses the Russian River

watershed in Northern California as a demonstration

study domain. Figure 2 illustrates the detailed terrain

information in the vicinity of this watershed, as well as

rain gauge stations deployed as part of the National

Oceanic and Atmospheric Administration (NOAA)

Hydrometeorology Testbed (HMT) (White et al. 2013).

It is one of the most flood-prone areas in the State of

California because of the watershed’s unique geogra-

phy. Accurate QPE is critical to balance the competing

needs for water supply and flood mitigation in this par-

ticular domain. However, it is very difficult to obtain

reliable QPE using operational Weather Surveillance

Radar-1988 Doppler (WSR-88D) due to the sampling

limitations of WSR-88D and complex precipitation

microphysics resulting from orographic enhancement

(Willie et al. 2017; Cifelli et al. 2018; Bytheway

et al. 2019).

The radar-only rainfall products produced by the

operational MRMS system are used as a basis for ap-

plying various bias correction methodologies. The

radar-only product essentially is hourly rainfall accu-

mulations created on 0.018 3 0.018 latitude/longitude

grids. Interested readers are referred to Zhang et al.

(2011) for more details about the algorithms im-

plemented by the MRMS system. The MRMS radar-

only product is selected in this study mainly for two

reasons: 1) the MRMS is an operational system and

MRMS products are widely used in the precipitation

community; 2) it is commonly recognized that the per-

formance of MRMS products over the western United

States (i.e., west of the Rockies) is poor, and the bias

correction scheme currently adopted in the MRMS

system (see also section 3b) may not be sufficient to

represent the environmental variations in complex ter-

rain. In addition, the findings in this study are expected

to support future development of the MRMS system.
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As illustrated in Fig. 2, there are 34 NOAA gauges

deployed near the Russian River basin, which are

assumed as ground truths when correcting the radar-

derived rainfall products. More details about the loca-

tions of these gauge sites are available in Chen et al.

(2019b). Each site is equipped with a 10-m surface

meteorological tower and a tipping-bucket rain gauge

that measures rainfall every two minutes with 0.01-in.

(i.e., 0.254mm) resolution. NOAA engineers at the

Earth System Research Laboratory (ESRL) regularly

maintain the surface meteorological sites to ensure

the data quality. At each station, the 2-min rainfall

data are postprocessed at NOAA/ESRL using an

automated quality-control routine designed to remove

obvious outliers. In this demonstration study, the

2-min gauge data are aggregated to hourly accumu-

lations at the top of each hour to match the MRMS

product resolution. The gauge stations are randomly

split into calibration (80%) and validation (20%) sites.

The calibration sites are used to derive the parameters in

the specific models described in section 2b [or more

generally the parameter b in Eq. (8)] and associated

uncertainties in the radar rainfall estimates. The radar

estimates are then corrected at all grid points based

on the derived uncertainty parameters. The bias

corrected radar estimates at the validation gauge

sites are evaluated using corresponding validation

gauge data.

In the following section, results for a precipitation

event that occurred from 7 to 10 February 2017 are de-

tailed to prototype the Bayesianmethod and benchmark

the performance relative to the MFB and LB correction

techniques. Northern California’s Mediterranean cli-

mate is characterized by wet winters and dry summers,

and it relies on a few atmospheric river (AR) events

every year for water supply (Ralph et al. 2006; Dettinger

2011). This event was a typical AR storm which can

represent the local precipitation characteristics to a

large extent. This event also coincided with the Oroville

Dam Crisis (White et al. 2019), resulted in major

flooding across portions of Northern California.

b. Results

In this section, the Bayesian model in Eq. (9) is eval-

uated first, which is only based on the rainfall intensities

(i.e., no environmental information included such as

terrain). The goal is to determine if the Bayesian tech-

nique can outperform the conventional radar QPE bias

correction approaches described in section 3.

As mentioned, the split of gauge stations into cali-

bration versus validation sites is determined randomly in

order to fully capture the distribution of QPE uncer-

tainties. Although the gauge proportion of 80% for

calibration and 20% for validation are not changed, the

specific site selections are different for each experiment.

Even if the validation and calibration gauges are de-

termined in one experiment, the parameter b in Eq. (8)

has many realizations (100 in our study) based on the

MCMC samples. For each realization, the Bayesian

framework will produce a bias corrected estimate. For

illustration purposes, this paper only presents results for

one experiment. That is, the 27 stations denoted by

black dots in Fig. 2 are used as calibration sites, whereas

the seven stations denoted by white dots are used for

validation purpose. It should be noted that in total 10

experiments (not shown) have been conducted with

different combinations of calibration and validation

gauges. We did observe some differences in the bias

correction performance after changing the combination

of gauge sites, especially when the calibration sites are

accidentally assembled in a small area. But overall, they

all show similar positive performance. In addition, for

each experiment, themedian value of the 100 versions of

the bias corrected radar QPE at each grid point (not

limited to gauge locations) is selected and considered

the final correction result at each location.

FIG. 2. The digital elevation model (DEM) information near the

Russian River basin in Northern California. The basin boundaries

are highlighted in white. The black (training sites) and white

(validation sites) dots denote NOAA rain gauge locations. The

split of training and validation sites is random, and this figure shows

one combination for illustration purposes. The nearest NEXRAD

radar [Sacramento, CA (KDAX)] is located at 38.50118N,

121.67788W; range rings of 100 and 200 km are indicated by

black curves.

DECEMBER 2019 CHEN ET AL . 2373



Figure 3 illustrates an example of radar-derived

hourly rainfall estimates over the Russian River water-

shed before and after bias corrections at 1300 UTC

7 February 2017. Apparently, the radar estimated rain-

fall intensity is substantially enhanced after applying

various bias correction techniques, especially the

Bayesian-based approach. Figure 4 shows the hourly

rainfall estimates and rainfall accumulations at a selected

validation gauge location during 13 intense rain hours for

the February 2017 precipitation event. The red line de-

notes rain gauge observations. The black and blue lines

respectively represent radar-only estimates before and

after bias correction using the proposed Bayesian tech-

nique. The bias corrected results using conventional MFB

(magenta line) and LB (green line) approaches are also

shown in Fig. 4.As expected, the radar-only product shows

significant underestimation compared to gauge observa-

tions, especially after 0600 UTC. After bias correction

using the MFB and LB correction approaches, both

show overestimation in terms of accumulated rainfall.

By contrast, the bias corrected results based on the

Bayesian technique agree very well with rain gauge

observations.

Figure 5 shows the scatterplots of hourly rainfall es-

timates from radar versus gauge measurements at all

seven validation gauge stations. Linear fittings of vari-

ous estimates and their 95% confidence intervals are

also indicated in Fig. 5. Overall, the radar-only estimates

perform poorly, demonstrating the challenges of radar

QPE over complex terrain. After the MFB correction,

the severe underestimation is alleviated, but the cor-

rected estimates are still far from the collocated gauge

observations. Both the LB correction and Bayesian

technique substantially improve the radar QPE perfor-

mance. In particular, the corrected results based on the

proposed Bayesian method agree better with gauge

FIG. 3. Radar-derived hourly rainfall estimates over the Russian River watershed before and after bias corrections at 1300 UTC 7 Feb

2017: (a) radar-only estimates; (b) estimates after MFB correction; (c) estimates after LB correction; (d) estimates after Bayesian-based

bias correction; and (e) as in (d), but with terrain information included.
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measurements, and the 95% confidence interval is rel-

atively narrower, indicating smaller variation in the

correction performance.

The probability density functions (PDFs) of gauge

measurements, radar-only estimates, and the bias cor-

rected radar estimates using the three different tech-

niques are illustrated in Fig. 6. Again, compared to

gauge observations, the radar-only estimates show very

poor performance, with the distribution highly skewed

to low rainfall intensities relative to the gauge distribu-

tion. For rainfall intensities less than 3mmh21, all three

correction methods show compatible performance.

However, the Bayesian approach shows better perfor-

mance at higher intensities, although the LB correction

results seem able to capture the heavy rainfall values

(.12mmh21) slightly better in this particular event.

To further quantify the bias correction performance,

the following metrics are computed for the combined

observations at the seven validation gauge locations,

including the root-mean-square error (RMSE; mm),

normalized mean error (NME; %), normalized mean

absolute error (NMAE; %), and the Pearson’s correla-

tion coefficient (CORR):
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where RR and RG are the rainfall estimate from radar

and validation gauges, respectively; the angle brackets

stand for the sample average.

The overall evaluation results at the seven validation

gauge stations are illustrated in Fig. 7. In particular, the

RMSEs (lower values indicate better performance) of

radar-only, MFB corrected, LB corrected, and Bayesian-

based correction products are 4.20, 2.99, 2.48, and 1.71mm,

respectively. The NMEs are 260.7%, 26.8%, 1.0%, and

2.0% for radar-only, MFB corrected, LB corrected, and

Bayesian-based correction products, respectively. Here,

it should be noted that the NME values only indicate the

overall biases. Possible cancellation of positive and nega-

tive biases may exist, resulting in a misleading perfor-

mance. Combined with the CORR, which describes the

FIG. 4. Hourly rainfall estimates and rainfall accumulations at a

selected validation gauge location during the February 2017 pre-

cipitation event: (a) hourly rainfall estimates and (b) rainfall ac-

cumulations. Estimates at other validation gauge locations are not

shown since they show similar performance.

FIG. 5. Scatterplot of hourly rainfall estimates from radar vs

validation gauge observations during the February 2017 pre-

cipitation event. The validation gauge locations are indicated by

white dots in Fig. 2. The radar estimates include radar only and bias

corrected products using the various techniques described in the

text. The black solid line represents the 1:1 line, whereas other lines

indicate the linear fitting of various estimates, and the shading

areas represent corresponding 95% confidence intervals.
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agreement between radar estimates and gauge obser-

vations, the NME is more useful. The CORRs (higher

values indicate better performance) are 0.11, 0.11, 0.53,

and 0.74 for the four estimates, respectively. In addition,

the NMAEs (the lower the better) can better reflect

the performance of various products, which are

64.5%, 41.0%, 35.0%, and 24.2% for the four estimates,

respectively.

5. Impact of terrain forcing on radar QPE
performance

Previous studies such as White et al. (2003) concluded

that wind direction and terrain forcing were among the

primary mechanisms responsible for precipitation in

such complex terrain. As such, this paper also attempts

to resolve the impact of terrain topography on the radar

QPEbias correction performance. As detailed in section

2b, the designed Bayesian framework is very flexible in

terms of including additional environmental informa-

tion. In this section, the regression model in Eq. (10) is

used in the Bayesian correction analysis. In this model,

the terrain elevation is considered a factor contributing

to the radar rainfall estimates. Ideally, wind information

could be included as well. However, we decided not to

do so due to the very limited wind observations available

in this study. In future, wind information derived from

models like the High-Resolution Rapid Refresh (HRRR)

(Benjamin et al. 2016) may be useful in extending the

Bayesian framework to further quantify different

contributing factors in the radar-derived precipitation

products.

Given the specific locations of NOAA HMT gauges

(see also Chen et al. 2019b), the terrain information is

classified into four categories based on the terrain ele-

vation. In particular, all the radar QPE grid points lower

than 50m in elevation (MSL) are labeled as one cate-

gory; those between 50 and 100m are labeled as the

second category; those between 100 and 300m are

labeled as the third category; and those higher than

300m are labeled as the fourth category. Such labeling is

incorporated as b1 and b2 in the regression model of

Eq. (10). For illustration purposes, the same experi-

ment as section 4 is conducted (i.e., the same groups of

27 calibration and seven validation sites are selected)

to emphasize the impact of terrain information.

Scrutinizing the DEM information in Fig. 2 and the

example radar QPEs in Figs. 3d and 3e, we can see that

the rainfall estimates at high elevations are further en-

hanced after incorporating the terrain information in the

Bayesian-based bias correction framework. Similar to

FIG. 7. Quantitative evaluation results of hourly rainfall estimates from radar before and after bias correction

using different techniques for the 7 Feb 2017 precipitation event: (a) RMSE (mm), (b) NME (%), (c) NMAE (%),

and (d) CORR.

FIG. 6. Probability density functions (PDFs) of hourly rainfall es-

timates (shown in Fig. 5) from radar and validation gauges.
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Fig. 4 which shows the superior performance of the

Bayesian technique to conventional MFB and LB cor-

rection approaches, Fig. 8 illustrates the bias corrected

results at the same validation gauge station. The MFB

and LB corrected products are not included in Fig. 8

since they are already shown in Fig. 4. Rather, only the

correction results based on the Bayesian technique with

and without including the terrain information are pre-

sented. At this specific location, noticeable differences

are observed in the corrected hourly rainfall estimates

(Fig. 8a) before (blue line) and after (cyan line) con-

sidering the terrain information. However, the differ-

ences in the accumulated rainfall (Fig. 8b) are small with

the Bayesian method including terrain information

performing slightly better.

Figure 9 shows the scatterplots of hourly rainfall es-

timates at all seven validation gauge stations. The linear

fittings of the corrected rainfall estimates and their 95%

confidence intervals are included as well. Figure 9 shows

that, after taking into account the terrain topography,

the linear fitting curve is closer to the 1:1 line, demon-

strating the improved performance of the Bayesian

method with terrain information included. The PDFs of

hourly rainfall estimates shown in Fig. 9 are illustrated in

Fig. 10. Surprisingly, the bias corrected result after in-

corporating the terrain information misses the first, low

intensity peak (;3mmh21) of the rainfall distribution.

This may reflect the relative impact of terrain in-

formation on the distribution of rainfall intensity but

more research is needed to confirm this hypothesis.

Overall, the Bayesian method including the terrain in-

formation shows an improved distribution compared to

validation gauge observations, especially at moderate to

heavy rain regions.

Table 1 shows the quantitative evaluation results of

corrected hourly rainfall estimates before and after

incorporating the terrain information. At the seven

validation gauge sites, all the evaluation scores are im-

proved after including the terrain factor: RMSE im-

proves from 1.71 to 1.59mm; NME improves from 2.0%

to 1.2%; NMAE improves from 24.2% to 22.5%; and

CORR improves from 0.74 to 0.79. Compared to the

radar-only products, the QPE performance is dramati-

cally improved after applying this Bayesian-based bias

correction.

6. Implications for real-time operational
applications

It is worth noting that the separation of calibration

and validation gauges in this paper is only for the pur-

pose of independent verification. In future operational

implementations, there is no need to divide the gauge

data into different groups. It is recommended that all the

FIG. 8. As in Fig. 4, but including the impact of terrain in-

formation in the Bayesian correction technique: (a) hourly rainfall

estimates and (b) rainfall accumulations.

FIG. 9. Scatterplots of radar-only rainfall estimates and bias

corrected estimates using the proposed Bayesian approach with

and without including the terrain information, vs validation gauge

observations. The black solid line represents the 1:1 line, whereas

other lines indicate the linear fitting of various estimates, and the

shading areas stand for corresponding 95% confidence intervals.
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quality-controlled gauges be used to calibrate the

Bayesian model so as to fully capture the features of the

parameter set b in the linked function. In the following

section, the application results at a few selected cali-

bration gauge sites are provided to reflect the opera-

tional performance of the proposed Bayesian approach.

One calibration gauge is randomly selected from each

elevation category. Figure 11 shows the hourly rainfall

estimates and rainfall accumulations at four selected

calibration gauge stations. These four calibration sites

are at the height of 29, 79, 151, 518m, respectively,

covering the four elevation categories. Figure 11 also

shows that the bias corrected radar QPE products are

dramatically better than those before correction. The

bias corrected products agree very well with gauge ob-

servations, especially after incorporating the terrain to-

pography into the Bayesian framework. In addition, it is

noted that the terrain information has a stronger impact

at higher elevations (see results at site ‘‘PVW’’).

Figure 12 shows the scatterplots of hourly rainfall

estimates at all 27 calibration gauge stations. Their

PDFs are illustrated in Fig. 13. It can be seen from

Fig. 12 that the bias corrected radar QPE products agree

very well with calibration gauge observations, and the

95% confidence intervals are very narrow, demonstrat-

ing the robustness of the Bayesian correction technique.

In particular, the PDF of bias corrected radar QPE after

integrating the terrain information is almost identical

to the distribution of rain gauge measurements (see

Fig. 13).

The quantitative evaluation results of bias corrected

hourly rainfall estimates at the 27 calibration gauge

sites are included in Table 1. As expected, the overall

performance after bias correction is similar to that at

validation gauge sites. Compared to the radar-only

products, the Bayesian corrected results both before

and after considering the terrain information show tre-

mendous improvement. After including the terrain in-

formation in the Bayesian framework, RMSE improves

from 2.20 to 1.90mm; NMAE: improves from 29.7% to

26.4%; and CORR improves from 0.72 to 0.80.

In addition, it should be noted that although rain

gauge data for the same precipitation event are used to

calibrate the model in this demonstration analysis, it

does not mean the proposed Bayesian correction ap-

proach would rely on real-time gauge observations or

even the gauge observations from the same event. As

mentioned, the designed Bayesian framework is very

flexible, and can be calibrated using any historical obser-

vations for ease of real-time application. As long as the

Bayesian correction model is calibrated (i.e., uncertainty

parameters are estimated), it can be applied to correct any

new radar QPE estimates. Spatially, the application is not

limited to the gauge locations used for calibration. Tem-

porally, the application is not limited to the time frames

used in the calibration process. The Bayesian correction

model can also be updated easily with newer gauge ob-

servations. Application errors induced by calibration

using observations from different precipitation types

will be investigated in future research.

7. Summary and future work

Quantitative precipitation estimation (QPE) using

operational WSR-88D over complex terrain in the

western United States remains a formidable challenge

due to the mountainous topography and fundamental

coverage gaps of WSR-88D. The limitations of radar

FIG. 10. PDFs of hourly rainfall estimates shown in Fig. 9.

TABLE 1. Evaluation results of hourly rainfall estimates for the 7

Feb 2017 event. The products include radar-only, as well as the

corrected estimates using the proposed Bayesian technique with

and without the terrain information. Columns (from left to right)

refer to the product type, root-mean-square error (RMSE; mm),

normalized mean error (NME; %), normalized mean absolution

error (NMAE; %), and correlation coefficient (CORR).

Rainfall product RMSE NME NMAE CORR

At calibration gauge sites

Radar only 4.66 265.3 67.4 0.36

Bayesian correction 2.20 0.1 29.7 0.72

Bayesian correction

(terrain included)

1.90 1.4 26.4 0.80

At validation gauge sites

Radar only 4.20 260.7 64.5 0.11

Bayesian correction 1.71 2.0 24.2 0.74

Bayesian correction

(terrain included)

1.59 1.2 22.5 0.79
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FIG. 11. Hourly rainfall estimates and rainfall accumulations at four selected calibration gauge locations during

intense rain hours of the February 2017 precipitation event. Estimates at other calibration gauge locations are not

shown since they show similar performance.
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sampling geometry are further compounded by the

complex precipitation microphysics as a result of oro-

graphic enhancement in the mountainous regions.

Unfortunately, a number of river basins in the western

U.S., including the Northern California region, are in

flood-prone areas with poor radar coverage. Current

operational radar QPE products are not sufficient to

accurately capture the precipitation variations in such

domains. Therefore, there is an urgent need to improve

operational radarQPE to facilitate our understanding of

local stream hydrology and improve flood forecasting.

As part of our continuing effort to improve radarQPE

over complex terrain, this study developed a Bayesian

framework based on local rain gauge observations to

correct the biases and reduce the uncertainties associ-

ated with operational radar rainfall products. A dem-

onstration study in the Russian River basin in Northern

California is detailed. In addition, conventional local

bias and mean field bias correction approaches are

implemented for comparison. Primary conclusions are

summarized as follows:

1) The proposed Bayesian framework is designed with

high flexibility. In addition to radar rainfall intensi-

ties, it is capable of incorporating additional factors

such as terrain topography and wind information.

This Bayesian-based correction technique is also not

limited to rainfall estimates at hourly scale. It can be

easily extended to other regions and to different

temporal scales.

2) Both the Bayesian correction technique and conven-

tional MFB and LB correction approaches can im-

prove the radar QPE performance.

3) The LB correction performs better than the MFB

correction. Based on the validation gauge observa-

tions, the RMSEs of MFB and LB corrected results

are 2.99 and 2.48mm, respectively; the NMAEs are

41.0% and 35.0%, respectively; and the CORRs are

0.11 and 0.53, respectively.

4) The proposed Bayesian technique performs much

better than conventional LB and MFB correction

approaches. If only the rainfall intensities are consid-

ered in the Bayesian framework, the RMSE, NMAE,

and CORR of the corrected QPE are 1.71mm, 24.2%,

and 0.74, respectively. These scores show improvement

over previous studies on WSR-88D-based QPE in

this complex terrain (e.g., Matrosov et al. 2014;

Willie et al. 2017).

5) After incorporating the terrain elevation informa-

tion in the Bayesian framework, the radar QPE bias

correction performance is further enhanced. The

RMSE improves from 1.71 to 1.59mm; NMAE im-

proves from 24.2% to 22.5%; and CORR improves

from 0.74 to 0.79. Compared to the radar-only

products (RMSE: 4.2mm; NMAE: 64.5%; CORR:

0.11), the improvement is dramatic. In fact, these

scores are among the best QPE results ever reported

for this particular domain. Overall, the QPE perfor-

mance after including the terrain information is im-

proved about 10% relatively to that before including

the terrain information (i.e., only rainfall intensity

values are considered).

FIG. 12. Scatterplot of hourly rainfall estimates from radar vs

calibration gauge observations during the February 2017 pre-

cipitation event. The calibration gauge locations are indicated by

black dots in Fig. 2. The black solid line represents the 1:1 line,

whereas other lines indicate the linear fitting of radar estimates,

and the shading areas stand for corresponding 95% confidence

intervals.

FIG. 13. PDFs of hourly rainfall estimates from radar and calibra-

tion gauges shown in Fig. 12.
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6) In real (operational) applications, real-time gauge

data are not required by the proposed Bayesian

framework since it can be calibrated using historical

observations. It is also suggested that all the reliable

gauge stations should be used in the model calibration

in order to fully capture the uncertainty distributions.

7) Sample results at calibration gauge sites are pre-

sented to reveal the operational performance of the

proposed Bayesian approach. The probabilistic dis-

tribution curves of bias corrected radar QPE at these

sites are almost identical to collocated rain gauge

observations, which is very encouraging.

However, it should be noted that the proposedBayesian

model is currently designed conditional on the precipita-

tion events. In reality, rainfall is characterized by large

spatiotemporal differences and there may be many zero-

value records. In terms of the probability distribution of

rainfall intensity, a zero-inflated model is expected to fur-

ther improve the Bayesian correction technique, which

should be investigated in future. In addition, large scale

demonstration prior to possible operational implementa-

tion by the MRMS system should be conducted.
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